Relative transmembrane segment rearrangements during BK channel activation resolved by structurally assigned fluorophore–quencher pairing

نویسندگان

  • Antonios Pantazis
  • Riccardo Olcese
چکیده

Voltage-activated proteins can sense, and respond to, changes in the electric field pervading the cell membrane by virtue of a transmembrane helix bundle, the voltage-sensing domain (VSD). Canonical VSDs consist of four transmembrane helices (S1-S4) of which S4 is considered a principal component because it possesses charged residues immersed in the electric field. Membrane depolarization compels the charges, and by extension S4, to rearrange with respect to the field. The VSD of large-conductance voltage- and Ca-activated K(+) (BK) channels exhibits two salient inconsistencies from the canonical VSD model: (1) the BK channel VSD possesses an additional nonconserved transmembrane helix (S0); and (2) it exhibits a "decentralized" distribution of voltage-sensing charges, in helices S2 and S3, in addition to S4. Considering these unique features, the voltage-dependent rearrangements of the BK VSD could differ significantly from the standard model of VSD operation. To understand the mode of operation of this unique VSD, we have optically tracked the relative motions of the BK VSD transmembrane helices during activation, by manipulating the quenching environment of site-directed fluorescent labels with native and introduced Trp residues. Having previously reported that S0 and S4 diverge during activation, in this work we demonstrate that S4 also diverges from S1 and S2, whereas S2, compelled by its voltage-sensing charged residues, moves closer to S1. This information contributes spatial constraints for understanding the BK channel voltage-sensing process, revealing the structural rearrangements in a non-canonical VSD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-dependent conformational changes in human Ca(2+)- and voltage-activated K(+) channel, revealed by voltage-clamp fluorometry.

Large conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channels regulate important physiological processes such as neurotransmitter release and vascular tone. BK(Ca) channels possess a voltage sensor mainly represented by the S4 transmembrane domain. Changes in membrane potential displace the voltage sensor, producing a conformational change that leads to channel opening. By site-directe...

متن کامل

Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BKCa channel

Large-conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channel α subunits possess a unique transmembrane helix referred to as S0 at their N terminus, which is absent in other members of the voltage-gated channel superfamily. Recently, S0 was found to pack close to transmembrane segments S3 and S4, which are important components of the BK(Ca) voltage-sensing apparatus. To assess the role ...

متن کامل

The single transmembrane segment determines the modulatory function of the BK channel auxiliary γ subunit

The large-conductance, calcium-activated potassium (BK) channels consist of the pore-forming, voltage- and Ca(2+)-sensing α subunits (BKα) and the tissue-specific auxiliary β and γ subunits. The BK channel γ1 subunit is a leucine-rich repeat (LRR)-containing membrane protein that potently facilitates BK channel activation in many tissues and cell types through a vast shift in the voltage depend...

متن کامل

Gating Rearrangements in Cyclic Nucleotide-Gated Channels Revealed by Patch-Clamp Fluorometry

Site-specific fluorescence recordings have shown great promise in understanding conformational changes in signaling proteins. The reported applications on ion channels have been limited to extracellular sites in whole oocyte preparations. We are now able to directly monitor gating movements of the intracellular domains of cyclic nucleotide-gated channels using simultaneous site-specific fluores...

متن کامل

A Role for the S0 Transmembrane Segment in Voltage-dependent Gating of BK Channels

BK (Maxi-K) channel activity is allosterically regulated by a Ca2+ sensor, formed primarily by the channel's large cytoplasmic carboxyl tail segment, and a voltage sensor, formed by its transmembrane helices. As with other voltage-gated K channels, voltage sensing in the BK channel is accomplished through interactions of the S1-S4 transmembrane segments with the electric field. However, the BK ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 140  شماره 

صفحات  -

تاریخ انتشار 2012